skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Allen, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Pyrogenic compounds, such as polycyclic aromatic hydrocarbons (PAHs), can track the type and intensity of fires and are preserved in many environmental matrices including speleothems. We recently reported on a stalagmite record of PAH abundance distributions from cave KNI-51, located among the eucalypt savanna in the Ningbing range of tropical Western Australia. In order to better understand the manner by which PAHs from local bushfires are deposited on the land surface and transported into caves, we performed a controlled burn and irrigation experiment at cave KNI-140, located near to and in the same bedrock as cave KNI-51. Samples of soil, vegetation, ash, and air were collected prior to and immediately succeeding the prescribed burn. The fire, which burned predominantly grasses, was ignited by matches (no accelerants were used) and covered approximately 30,000 square meters upwind from the cave. The land surface above the cave was irrigated prior to and immediately succeeding the burn with resulting dripwater collected for analysis. Next, ash samples were deposited directly above the cave and then similarly irrigated, with the drip water also collected. The PAHs present in these samples were measured via gas chromatography-mass spectrometry at Ca’ Foscari University, Venice. Our results reveal that low molecular weight PAHs were the most abundant species of PAH in the drip water and heavier PAHs were substantially less abundant. This result is likely due to the low combustion temperature of the burn, with abundances increasing through each of the three stages of sample collection, demonstrating that deposition from smoke and cinders produces identifiable signals in dripwater (and thus stalagmite) PAHs, supporting the contention that KNI-51 stalagmites record fire activity occurring not just above the cave but within km of the cave. On-going analyses of soil, vegetation, and ash samples will further clarify the role of fire on production and transmission of PAHs at this site, and thus how these organic compounds preserved in speleothems can help delineate the fire history in the region. 
    more » « less
    Free, publicly-accessible full text available December 16, 2025
  2. We use galaxy cluster abundance measurements from the South Pole Telescope enhanced by multicomponent matched filter confirmation and complemented with mass information obtained using weak-lensing data from Dark Energy Survey Year 3 (DES Y3) and targeted Hubble Space Telescope observations for probing deviations from the cold dark matter paradigm. Concretely, we consider a class of dark sector models featuring interactions between dark matter (DM) and a dark radiation (DR) component within the framework of the effective theory of structure formation (ETHOS). We focus on scenarios that lead to power suppression over a wide range of scales, and thus can be tested with data sensitive to large scales, as realized, for example, for DM–DR interactions following from an unbroken non-Abelian S U ( N ) gauge theory (interaction rate with power-law index n = 0 within the ETHOS parametrization). Cluster abundance measurements are mostly sensitive to the amount of DR interacting with DM, parametrized by the ratio of DR temperature to the cosmic microwave background (CMB) temperature, ξ DR = T DR / T CMB . We find an upper limit ξ DR < 17 % at 95% credibility. When the cluster data are combined with Planck 2018 CMB data along with baryon acoustic oscillation (BAO) measurements we find ξ DR < 10 % , corresponding to a limit on the abundance of interacting DR that is around 3 times tighter than that from CMB + BAO data alone. We also discuss the complementarity of weak lensing informed cluster abundance studies with probes sensitive to smaller scales, explore the impact on our analysis of massive neutrinos, and comment on a slight preference for the presence of a nonzero interacting DR abundance, which enables a physical solution to the S 8 tension. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  3. Cosmic shear, galaxy clustering, and the abundance of massive halos each probe the large-scale structure of the Universe in complementary ways. We present cosmological constraints from the joint analysis of the three probes, building on the latest analyses of the lensing-informed abundance of clusters identified by the South Pole Telescope (SPT) and of the auto- and cross-correlation of galaxy position and weak lensing measurements ( 3 × 2 pt ) in the Dark Energy Survey (DES). We consider the cosmological correlation between the different tracers and we account for the systematic uncertainties that are shared between the large-scale lensing correlation functions and the small-scale lensing-based cluster mass calibration. Marginalized over the remaining Λ cold dark matter ( Λ CDM ) parameters (including the sum of neutrino masses) and 52 astrophysical modeling parameters, we measure Ω m = 0.300 ± 0.017 and σ 8 = 0.797 ± 0.026 . Compared to constraints from primary cosmic microwave background (CMB) anisotropies, our constraints are only 15% wider with a probability to exceed of 0.22 ( 1.2 σ ) for the two-parameter difference. We further obtain S 8 σ 8 ( Ω m / 0.3 ) 0.5 = 0.796 ± 0.013 which is lower than the measurement at the 1.6 σ level. The combined SPT cluster, DES 3 × 2 pt , and datasets mildly prefer a nonzero positive neutrino mass, with a 95% upper limit m ν < 0.25 eV on the sum of neutrino masses. Assuming a w CDM model, we constrain the dark energy equation of state parameter w = 1.1 5 0.17 + 0.23 and when combining with primary CMB anisotropies, we recover w = 1.2 0 0.09 + 0.15 , a 1.7 σ difference with a cosmological constant. The precision of our results highlights the benefits of multiwavelength multiprobe cosmology and our analysis paves the way for upcoming joint analyses of next-generation datasets. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  4. null (Ed.)
    Scientists are increasingly motivated to engage the public, particularly those who do not or cannot access traditional science education opportunities. Communication researchers have identified shortcomings of the deficit model approach, which assumes that skepticism toward science is based on a lack of information or scientific literacy, and encourage scientists to facilitate open-minded exchange with the public. We describe an ambassador approach, to develop a scientist’s impact identity, which integrates his or her research, personal interests and experiences to achieve societal impacts. The scientist identifies a community or focal group to engage, on the basis of his or her impact identity, learns about that group, and promotes inclusion of all group members by engaging in venues in which that group naturally gathers, rather than in traditional education settings. Focal group members stated that scientists communicated effectively and were responsive to participant questions and ideas. Scientists reported professional and personal benefits from this approach. 
    more » « less